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Verification of the semiclassical method for an electron moving in a homogeneous magnetic field
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A procedure based on the semiclassical approximation for high energy levels is developed to yield solutions
to the classical equation of charge motion and to the Bargmann-Michel-Telegdi spin equation. To this end,
exact solutions to the Klein-Gordon and the Dirac-Pauli equations are used. The essence of the procedure under
review is that the quantum state of a charged particle in a homogeneous magnetic field is represented as a
superposition of states corresponding to the neighboring energy levels. As a consequence, the expectation
values of the momentum and spin operators with respect to the resulting nonstationary wave fpactep
strictly obey the classical equations of charge motion and spin precession.
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I. INTRODUCTION Pauli equation for a charged particle moving in a homoge-
neous magnetic field. A simplified version of this method
In the semiclassical approach, the charge motion is dewas used ir{7] to reveal a physical pattern underlying the
scribed in a classical way, and quantum transitions are calPehavior of the longitudinal electron-spin polarization in a
culated on the basis of matrix elemeftd. This method is magnetic field. This approach is adopted[8] to describe
known to be applicable in the ultrarelativistic case at ultra-quantum neutron spin-flip transitions.
high electron energies. For example, at energies of OUr task is to explore the time evoluti_on of the expecta-
~2.5 GeV, which are typical for current storage rings with ion values of the momentum and spin operators for a

a characteristic parametetp~ 10’ Oe cm, the electron en- charged particle moving ‘F‘. a homogeneous |_”nagnetic field.
ergy levels amount te~ 10", For radiative transitions to To demonstrate the capability of the method discussed, let us

lower energy levelsAn/n~10"7. In this case, according to examine the problem at hand first. In Sec. Il, we will con-
the uncertainty principle, all quantum processes occur in ider a scalar particle and compare the time evolution of the

region as small as a few angstrorfeee [2] for details expectation value of the momentum operator for this particle
Clearly, this is a negligible value for an orbital radius of with the solution to the classical equation of charge motion.

about 10 m. Hence, the classical, or more precisely, semil ese "’_‘r? foun_d to differ by a factor. S_ect|on Il will focus
n a spins particle. In addition to evolution of the expecta-

classical concept of the electron trajectory can be used her@ S
jon value of the momentum operator, we will discuss the

In the theory of synchrotron radiation, the semiclassical i . .
ehavior of the expectation value of the spin operator. The

method allows all quantum corrections to the synchrotro Iso differs f h Ui he BMT ion b
radiation power to be calculated, including the spin-flip ef- atter also differs from t'e SO u.tlon to the .eq'uatlon y
the above factor only. Finally, in Sec. IV, we will introduce

fects[3,4]. This method is straightforward to use. What i . - .
s[3.4] S s Sralg " us 'S a procedure that will help to eliminate the difference between

more, it provides a visual picture of physical processes oc—h d classical hes. To thi 4 th
curring at ultrahigh electron energié@ecoil effects, radiative the quantum and classical approaches. To this end, the state

spin self-polarization, spin magnetic-moment radiation,Of a particle will be represented by a wave packet so that the

mixed charge and magneton radiation, radiation associat e evolution of expectation values of the corresponding

with the anomalous part of the electron magnetic momentoPerators with respect to this nonstationary wave function

etc) will coincide with that predicted by the classical mechanics.

Impressive success has been achieved in the semiclassical
synchrotron radiation theory. However, to our knowledge, Il. MOTION OF A SCALAR PARTICLE
rigorous mathematical substantiation of this method based on

¢ soluti 1o the Klein-Gord i o the Di Let us assume that the state of a scalar particle is formed
exact solutions to the Kiein-sordon equation orto the irac-, 5 4y packet by superposing exact solutions to the
Pauli equation is lacking. General statements of the theor

; ] . O lein-Gordon equation corresponding to three neighboring
were, in fact, postulated on the basis of the uncertainty p”nénergy levelsi—1, n, andn+1:

ciple (see[1]).

In this paper, solutions to the classical equation of charge n+1 i
motion and to the Bargmann-Michel-TelegBMT) spin v(rt= > Amlﬂm(f)exl{——moCZBmt)v
precession equatidrb]| are constructed in the framework of m=n—1 fi

guantum mechanics, using nonstationary wave functises . ) .
the general statements [6]). The latter are, in their turn, wherey,(r) are the stationary solutions to the Klein-Gordon

exact solutions to the Klein-Gordon equation or to the Dirac-eduation in a homogeneous magnetic fielde Appendix A
andA,, are the expansion coefficients.

To determine the coefficient,, in the semiclassical ap-
*Email address: bord@mail.tomsknet.ru proximation (i>1), the probability that a particle will be
TEmail address: myagkii@mail.ru found at each of the levels is assumed to be the same. For
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n>1, this is a natural assumption. Normalizing the waveposition of exact solutions to the Dirac-Pauli equation corre-
function W (r,t) to unit probability yields a relation of the sponding to the three neighboring energy leveltsl, n, and
form n+1 has the form

n+1 n+1 |

>, AXAL=1. V(=2 2 Amim(r)exp — =mec?Byt|,
E - h
m=n—1 { m=n-1

1)
In what follows the explicit form ofA, is immaterial but ] ) ) )
different relations between these coefficients are of great imhere #/n(r) are the stationary solutions to the Dirac-Pauli

portance. In particular, we need the following equation: ~ €quation(see Appendix B and A, are expansion coeffi-
cients. Note that, in this case, allowance is made for polar-

. . 2 ization states defined by the quantum numper+ 1. Let us
Axe=An An—l+An+1An:§- assume that a given longitudinal-polarization state at time
=0 for an electron located at levai is of the fornt
Now let us calculate the expectation value of the momen-
tum operato in the state¥ (r,t). ln the first step, we cal- (o |5)2 Amtme =N oA mting - 2)
culate matrix elements of th@/,, |P|¥m) type with respect ¢
to stationary solutions to the Klein-Gordon equation. Then

. : . - . Having solved Eq(2) we find the eigenvalue
using the semiclassical condition®$ 1) for each matrix el- ¢ a) g

ement[see Eqs(A2)] we write (W|P| W), explicitly to give Am=eVbZ+b2, e=+1
N [ ) . , In the semiclassical approximation, it can be supposed that
(Px)1=5Mocb, [Axe expli wt) —Agexp(—iwt)] for all values ofm the spin coefficients are the same, i.e.,
Ci(m,{)=C;(n,{) and, moreover\,=\, [see Eqs.(B3)
2 . and(B4)]. Then we have
=— §m0ch sinwt,

_ b,+ebyb?+b]

Ain=kKA_
1im— K im:s K Br‘l{bL

. 1
(Py)=5moch, [ expliwt) + Ak exp( —iwt)]
Let us also require that the wave functit(r,t) be normal-

2 ized to unit probability. As a result, we get
= =mych, coswt,
3 n+1
A > > AL AmM=L )
<Pz>t:mOCbz- ¢ m=n-1 (e
Here In what follows we need the relations
2 " 2
MmeC eoH eoH
0= (Byiy=Bp=—"——— W= 3 (AfAineatA A i) =5, (48
A n+l  Pn m-c2B Mac2 m=n—1
o n oY
is the frequency that, in essence, coincides with the cyclotronQl _ é A% A _ é A* A 2«
frequency of rotation of a classical particle in a plane per- =2 4, "am-imti 40 FoimtHmTlT g P
pendicular to the magnetic field vector. In this approxima- (4b)
tion, B,— v, where y=(1—8%) "2 is the Lorentz factor
and g is a velocity of the particle in classical theory. ntl
This leads us to conclude that the expectation values dif- Az= 2 A’l‘mA,lm=2—, (40
fer from the corresponding classical solutions to the equation m=n-1 k°+1
of motion of a charged particle only by the factor 2/3 in the i )
(P and<|5y>I components. Note that the same result was A, = A* A — A% A _Kk- 4
also obtained irf8] for an ordinary one-dimensional quan- 4 m:2n—1 (AinAin =A% 1mA-1m) K2+1 (49
tum harmonic oscillator. In the discussion below, we will
show that this factor can be made as large as unity. To simplify the calculations we suppose that, as an electron
makes a transition from one level to another, the projection
IIl. CHARGE MOTION AND SPIN PRECESSION of the momentum of the electron onto the direction of the

OF A DIRAC-PAULI PARTICLE

When considering the Dirac-Pauli particle the spin polar- it is known[7] that, with regard to the anomalous magnetic mo-
ization of the particle must be taken into account. A superment of an electron, the operatar{P) is not an integral of motion.
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magnetic field is conserved. In addition, random deviationgotal precession is determined not only by the cyclotron fre-
of the orbital center of the electron due to radiation are nequencyw but also by the anomalous frequency to give
glected. These restrictions imply thaj=b, ands’=s (see

Appendix B. 0 mOCZ(B B JuaH b
Now, by analogy to a spinless particle, we find the expec- a= 7 (Bn=bnp)=é—— 75—
h i \JbZ+b?

tation value of the operatdA? using the state of the Dirac-
Pauli particle given by Eq1) (see the corresponding matrix
elements in Appendix B As a result of straightforward but

cumbersome calculations, we derive, in view of these restric-

tions, the following equations:

<I5X>t=i§moch[911 expliot) — AT exp —iwt)]

2
= — =mych, sinwt,

3 (53
1
(Py>t mocbl[Qll expiwt) + AT exp —iwt)]
= 3Moch, cost, (5b)
(P2)t=moch;. (50
Here
2
mgyC egH eoH
w=——-(B —B,,)= —
ﬁ ( n+1¢ ng) mOCZBn{ moczy

is the frequency that in the BMT approximati¢ine charge
motion is independent of the spin precessionincides with

Note that in the BMT approximation, the term comprising

the anomalous magnetic moment in the spin operatois
immaterial for the resul¢6).

We see that, by analogy with the spinless charged par-
ticle, the results obtained in Eq&a), (5b), (6a), and (6h)
differ from the corresponding solutions to the classical equa-
tions of charge motion and spin precession by the factor 2/3.

IV. SEMICLASSICAL CORRESPONDENCE PRINCIPLE

To construct a more precise semiclassical theory of
charge motion and spin precession, we will consider a wave
packet involving exact solutions to the Dirac-Pauli equation
(B2) corresponding to closely spaced energy legdts this
case, wave functiofil) can be written in the following form:

\P(r,t)—z E Armilmg( r)exr{—%moc Bmgt) (7)

wherefR is the set of values of the principal quantum num-
ber. Let us assume that each valueroi Eq. (7) belonging
to the set is much larger than unity, i.ea>1. At the same

the cyclotron frequency of rotation of an electron in thetime, we have
plane perpendicular to the magnetic field vector. In this ap-

proximation,B,,— .

N>N=Mpy— Mnin=>1,

A similar procedure applies to calculations of the expec-

tation value of the spin operat&* (see[9]) to yield

S/"“:

1 p 1 p Ma
— + PPt
Mo C((T ).p30 P1 mocz

psH
Taking into account Eqg4), we obtain

. 2
(S)t=— §§L(003wt sinQ,t+bsinwt cosQt), (6a)

- 2
(S=— §§L(sinwt sinQ) .t —b coswt cos ,t), (6b)

b,b,
b ——{, cosQ,t, (60

<Sz>t b gz

(8% zgg +B b—lg cosQ t (6d)
t b z ng b L a‘-

Here 2=1-¢2, ¢,

=2k(k?+1) ! are constants that, as

where mp,5 and my,;, are maximum and minimum values
belonging tofR, andn is the quantum number frot defin-
ing some energy level to which a given classical trajectory
corresponds. Let us further assume that the other energy lev-
els from the set are symmetric about lewvel

The next natural step in our method is to derive the coef-
ficientsA;,. The central idea of the derivation is the same as
in Eq. (3), i.e.,

EEAAgm

Aim=KkA_1m,

Then, relationg4) can easily be extended to the case under
consideration, namely,

Mmax— 1

A= E

M=Mpin

N—1
(A;.cmAlm+1+ A% 1mA—1m+ 1)= T )

(8a)

will be seen later, are analogous to some constants in the?it can be shown that there is a simpler form of this construction
classical spin theory. Thus, as in the classical approach, thier the motion of a spinless charged particle.
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Mmax~ 1 Mmax~1 Moreover, the procedure under review can be extended to the
Y ALAime= 2 A LA tensor operatof9]
M= Mmin M= Mpin
N-1 « o 11#7=(d,II),
N k1 (8b)
- 1 2 Ma
®=— —p3(oXP)+ p1(oxXH),
P MC moC?
A= 2 AT A_in=——, (89
me R K+ 1 1
fi= o+ ——py(axP)+ 2 H.
W21 moC moC?
U= > (AlAim— AL A i) =——.  (80) o ,
meR k“+1 In the BMT approximation, the tensor operator is related to
S* by the formula[ 2]
Following the above procedure of calculating the expec-
tation values of the momentum and spin operators and using . 1
Egs.(8) we obtain [I#=——grrehS p,
mgC
~N-1 ) R . .
(P,)y=———mycb, sinwt, Thus, the expectation valué$*),, (P),, and (II1*"),

calculated following the procedure discussed in Sec. IV,

obey the classical equation of charge motion and spin pre-

(o) :N_lm cb. cosot cession. The approach introduced in this work substantiates
yrt o~HL ' the use of the semiclassical method for gaining an insight
into physical phenomena associated with high-energy

<Pz>t moCh, , charged particles. In particular, the semiclassical approach

can be the basis for a classical model for certain purely quan-

A N—1 tum processes. For example, it can be used to establish a
(Sot=— Tgl(coswtsinﬂat—l—bsinwt cos,t), relationship between spin-flip transitions and classical spin

precession3].

-1
()= ——gL(smwt sinQ,t—b coswt cosQ,t), ACKNOWLEDGMENTS
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APPENDIX A

The motion of a scalar particle in a constant homogeneous
magnetic fieldH=(0,0H) is given by the Klein-Gordon
equation

(8% =E§+B b—lg cosQt
t b z n{b s at-

Thus, forN>1, the difference of P,),, (P,), (S, and
(éy>t from the results obtained by the classical theory is
eliminated, and the time evolution of the expectation values
(P), and(S*), is made to coincide with the solutions to the . L
corresponding classical equatiorig]. whereE=i% /gt is the energy operatoR=p—(e/C)A is
It is easy to see that the anomalous magnetic moment ¢he kinetic momentum operatoA = (—Hy/2Hx/2,0), e=

an electron affects not only the time behavior of the spin—€o<0 is the charge, anah, is the rest mass of the particle.
projection onto the direction of motioflongitudinal polar- It is known that in this case the wave functigir,t) is to
ization) of the particle 7] but also the behavior of spin in the be the eigenfunction of the energy operaﬁqrand of the
plane perpendicular to the magnetic field vector, i.e., the t'm%rqectlon of the kinetic momentum operaterand orbital

evolution of(S,); and(S,),. angular momentum operatér=rxp onto the direction of
the magnetic field vector, i.e.,

1., -
gEZ— P2+ mgCZ) ¥(r,1)=0,

V. CONCLUDING REMARKS

R Ey=Eng, Pu=ps, Lyp=hly.
It should be noted thdS*), derived in Sec. IV satisfy the V=Eo¥ #=Pa¥ H=HY

relations given by the classical spin theory: Then, in the cylindrical coordinates (p,z) most suitable in
R R o this case, the solution to the Klein-Gordon equation has the
<S'u>t<PM>t:0' <SM>I<S;L>t:1' form [11]
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. . . 1 N Ma
— —IEnt/hqip,z/h qil @ =0+ — X +
wr.h JL 2ahc erielngp). (A M=o, moc‘OZ((r P)z moC?

The functionl, {(p) in Eq. (Al) is defined by the Laguerre
polynomiaIsQ's(p) with the help of the following relation:

in a homogeneous magnetic field is taken as a spin integral
of motion characterizing the electron-spin polarization rela-
tive to the magnetic field vector. Then we have

1 eoH
_ —pl2n-s_(n-s)y2 __ 0" 2 ~ ~ n 1
ns(p)= =@ Qs P p= gt Ay=En.  Pu=p.u. Jz¢=h(l— 5| Bl
Heren=1+s=0,1,2 ... is theprincipal quantum number, N~ -
ands=0,1,2... andl=0,=1,=2,... are theradial and Mzp=Cby,  (==*1. (B1b)
az';f‘hu;h:rigruan:;rtr;]é‘ur:r?ii::' < written as In cylindrical coordinatesr( ¢,z), the wave function that
9y P is a solution to the Dirac-Pauli equation and satisfies Egs.
B1) has the form7
En=moc?B,=mc?\1+b+b?, (B 7]
VeoH . _ _
rt)= e*'Engt/ﬁe'pzZ/ﬁe'U*1)‘Pf ’ ,
b =2 HoH (n+ E) wr. \/E\/quﬁc (p.¢)
MoC? 2 (B2)
whereb,=p,/mqc is the projection of the momentum onto Where
the direction of the field angio=eyh/2myc is the Bohr
magneton. Ciln-15(p)
The matrix elements of the momentum operator of the iCylns(p)e'®
scalar particle have the form f(p,p)=
C3|n71,s(P)
. i iCylns(p)e'®
<lr/’m’|Px|wm>:§mOCbL(5m’—m,+l_§m’—m,—1)v "
(A2a) Heren=1+s=0,1,2 ... is theprincipal quantum number,
s=0,1,2 ... is theradial quantum number, and=0,*+1,
R 1 *2,... is theazimuthal quantum number. In dimensionless
(Y| Pyl ¢m>=§mocbl(5m,_m,+l+ Om'—m,—1) form, the spin coefficient€; are determined as
(A2Db) ¢ A7 1 b, b,
R C1=§ E 1+§B 1+B—+é’ 1—B—,
<‘//m’| Pz| llfm>= mOCbzﬁm’m- (AZC) : ng né
APPENDIX B C—g\/l 1 \/1 D \/1+ b
=3 V3| 174, i Bns ¢ B!’

We use the solutions to the following Dirac-Pauli equa-

tion: g\/l
©:72Vz2

iﬁﬁzﬂlﬂ- H=c(a-P)+psmoc?+ paps(o-H),

1
1+

\/1+ > \/1 >
o/ VI8, *V1 B,
C_1\/1 L 1 \/1 b, \/1 b,
“2N2| )| VTR, TN T B,

where P=p— (e/c)A is the kinetic momentum operatoh,

=(—Hy/2Hx/2,0), H is the external magnetic fieldy, (B3
= (al2m) ug is the anomalous part of the electron magneticyhere the electron energy is given as
moment, ande=—e,<0 andm, are the charge and rest
mass of the electron. E H 2

It is known [7] that in this case a complete set of com- Bn,= ngz = \/b§+ V1+ bf+§'ua 5| (B4)
muting operators characterizing the quantum state of the par- mgC mgC
ticle consists of the Hamiltoniahl, projections of the mo-
meAntulm operatoP anq totgl angular moment-um- operatbr b,= P, . b,=2 toH N b= m
=L+ 3% 0o onto the direction of the magnetic field vector, meC moc?
and the polarization operator. For definiteness, the magnetic
field vector is oriented along th&axis. According td 7] the Let us give the exact forms of all necessary matrix ele-
operator ments of the momentum and spin operators:
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v 7| Pl thimg) moch, (5 8 D
< m' ' x| Pmg :EmOC 1 (Om/ —m,+17 Om/ —m,—1) Oy ¢»
1By i) =5 MG, (5 +8 )8
( m ¢ | Pyl ¥m¢ :Emoc 1 (Om/ —m,+1 7 Om/ —m,—1) O/ ¢ »

<'pm’§’| I,:\>z| ¢m§> = mOCbz‘Sm’m‘sg’g ’

~ i
<lr/fm/§'|sx|lr//m(>:§[b_ {(Om—m,+1~ Omr—m,~1)]

><(5m’7m,+1_ 5m’7m,—1)57§’§1
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A 1
<¢m'§’|sy|¢m§>:§[b_€( Om'—m,+1~ Om'—m,—1)]

X(5m'—m,+1+ §m’—m,—l)5—{’gr

b, b,

o B
<'/’m’{’|sz|¢mg>:(§%§5§’g+ b 5—§/§> Smim >

. b Bnb
<l/lmrgr|so|l/lm{>:(gﬁ5§7g+%5_{r§) 5mrm.
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