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Verification of the semiclassical method for an electron moving in a homogeneous magnetic fiel

V. A. Bordovitsyn* and A. N. Myagkii†

Physics Department, Tomsk State University, Tomsk 634050, Russia
~Received 14 March 2001; published 24 September 2001!

A procedure based on the semiclassical approximation for high energy levels is developed to yield solutions
to the classical equation of charge motion and to the Bargmann-Michel-Telegdi spin equation. To this end,
exact solutions to the Klein-Gordon and the Dirac-Pauli equations are used. The essence of the procedure under
review is that the quantum state of a charged particle in a homogeneous magnetic field is represented as a
superposition of states corresponding to the neighboring energy levels. As a consequence, the expectation
values of the momentum and spin operators with respect to the resulting nonstationary wave function~packet!
strictly obey the classical equations of charge motion and spin precession.
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I. INTRODUCTION

In the semiclassical approach, the charge motion is
scribed in a classical way, and quantum transitions are
culated on the basis of matrix elements@1#. This method is
known to be applicable in the ultrarelativistic case at ult
high electron energies. For example, at energies
;2.5 GeV, which are typical for current storage rings w
a characteristic parameterHr;107 Oe cm, the electron en
ergy levels amount ton;1017. For radiative transitions to
lower energy levels,Dn/n;1027. In this case, according to
the uncertainty principle, all quantum processes occur i
region as small as a few angstroms~see @2# for details!.
Clearly, this is a negligible value for an orbital radius
about 10 m. Hence, the classical, or more precisely, se
classical concept of the electron trajectory can be used h

In the theory of synchrotron radiation, the semiclassi
method allows all quantum corrections to the synchrot
radiation power to be calculated, including the spin-flip
fects @3,4#. This method is straightforward to use. What
more, it provides a visual picture of physical processes
curring at ultrahigh electron energies~recoil effects, radiative
spin self-polarization, spin magnetic-moment radiatio
mixed charge and magneton radiation, radiation associ
with the anomalous part of the electron magnetic mome
etc.!.

Impressive success has been achieved in the semiclas
synchrotron radiation theory. However, to our knowledg
rigorous mathematical substantiation of this method base
exact solutions to the Klein-Gordon equation or to the Dir
Pauli equation is lacking. General statements of the the
were, in fact, postulated on the basis of the uncertainty p
ciple ~see@1#!.

In this paper, solutions to the classical equation of cha
motion and to the Bargmann-Michel-Telegdi~BMT! spin
precession equation@5# are constructed in the framework o
quantum mechanics, using nonstationary wave functions~see
the general statements in@6#!. The latter are, in their turn
exact solutions to the Klein-Gordon equation or to the Dir
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Pauli equation for a charged particle moving in a homo
neous magnetic field. A simplified version of this meth
was used in@7# to reveal a physical pattern underlying th
behavior of the longitudinal electron-spin polarization in
magnetic field. This approach is adopted in@3# to describe
quantum neutron spin-flip transitions.

Our task is to explore the time evolution of the expec
tion values of the momentum and spin operators for
charged particle moving in a homogeneous magnetic fi
To demonstrate the capability of the method discussed, le
examine the problem at hand first. In Sec. II, we will co
sider a scalar particle and compare the time evolution of
expectation value of the momentum operator for this part
with the solution to the classical equation of charge moti
These are found to differ by a factor. Section III will focu
on a spin-12 particle. In addition to evolution of the expecta
tion value of the momentum operator, we will discuss t
behavior of the expectation value of the spin operator. T
latter also differs from the solution to the BMT equation b
the above factor only. Finally, in Sec. IV, we will introduc
a procedure that will help to eliminate the difference betwe
the quantum and classical approaches. To this end, the
of a particle will be represented by a wave packet so that
time evolution of expectation values of the correspond
operators with respect to this nonstationary wave funct
will coincide with that predicted by the classical mechani

II. MOTION OF A SCALAR PARTICLE

Let us assume that the state of a scalar particle is form
as a wave packet by superposing exact solutions to
Klein-Gordon equation corresponding to three neighbor
energy levelsn21, n, andn11:

C~r ,t !5 (
m5n21

n11

Amcm~r !expS 2
i

\
m0c2Bmt D ,

wherecm(r ) are the stationary solutions to the Klein-Gordo
equation in a homogeneous magnetic field~see Appendix A!
andAm are the expansion coefficients.

To determine the coefficientsAm in the semiclassical ap
proximation (n@1), the probability that a particle will be
found at each of the levels is assumed to be the same.
©2001 The American Physical Society03-1
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n@1, this is a natural assumption. Normalizing the wa
function C(r ,t) to unit probability yields a relation of the
form

(
m5n21

n11

Am* Am51.

In what follows the explicit form ofAm is immaterial but
different relations between these coefficients are of great
portance. In particular, we need the following equation:

AKG5An* An211An11* An5
2

3
.

Now let us calculate the expectation value of the mom
tum operatorP̂ in the stateC(r ,t). In the first step, we cal-
culate matrix elements of thêcm8uP̂ucm& type with respect
to stationary solutions to the Klein-Gordon equation. Th
using the semiclassical condition (n@1) for each matrix el-
ement@see Eqs.~A2!# we write ^CuP̂uC& t explicitly to give

^P̂x& t5
i

2
m0cb'@AKG exp~ ivt !2AKG* exp~2 ivt !#

52
2

3
m0cb' sinvt,

^P̂y& t5
1

2
m0cb'@AKG exp~ ivt !1AKG* exp~2 ivt !#

5
2

3
m0cb' cosvt,

^P̂z& t5m0cbz .

Here

v5
m0c2

\
~Bn112Bn!5

e0H

m0c2Bn

→ e0H

m0c2g

is the frequency that, in essence, coincides with the cyclo
frequency of rotation of a classical particle in a plane p
pendicular to the magnetic field vector. In this approxim
tion, Bn→g, where g5(12b2)21/2 is the Lorentz factor
andb is a velocity of the particle in classical theory.

This leads us to conclude that the expectation values
fer from the corresponding classical solutions to the equa
of motion of a charged particle only by the factor 2/3 in t

^P̂x& t and ^P̂y& t components. Note that the same result w
also obtained in@8# for an ordinary one-dimensional quan
tum harmonic oscillator. In the discussion below, we w
show that this factor can be made as large as unity.

III. CHARGE MOTION AND SPIN PRECESSION
OF A DIRAC-PAULI PARTICLE

When considering the Dirac-Pauli particle the spin pol
ization of the particle must be taken into account. A sup
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position of exact solutions to the Dirac-Pauli equation cor
sponding to the three neighboring energy levelsn21, n, and
n11 has the form

C~r ,t !5(
z

(
m5n21

n11

Azmcmz~r !expS 2
i

\
m0c2Bmzt D ,

~1!

wherecm(r ) are the stationary solutions to the Dirac-Pa
equation~see Appendix B! and Azm are expansion coeffi-
cients. Note that, in this case, allowance is made for po
ization states defined by the quantum numberz561. Let us
assume that a given longitudinal-polarization state at timt
50 for an electron located at levelm is of the form1

~s•P̂!(
z

Azmcmz5lmAzmcmz . ~2!

Having solved Eq.~2! we find the eigenvalue

lm5«Ab'
2 1bz

2, «561.

In the semiclassical approximation, it can be supposed
for all values ofm the spin coefficients are the same, i.
Ci(m,z).Ci(n,z) and, moreover,lm.ln @see Eqs.~B3!
and ~B4!#. Then we have

A1m5kA21m , k5
bz1«bAb'

2 1bz
2

Bnzb'

.

Let us also require that the wave functionC(r ,t) be normal-
ized to unit probability. As a result, we get

(
z

(
m5n21

n11

Azm* Azm51. ~3!

In what follows we need the relations

A15 (
m5n21

n

~A1m* A1m111A21m* A21m11!5
2

3
, ~4a!

A25 (
m5n21

n

A1m* A21m115 (
m5n21

n

A21m* A1m115
2

3

k

k11
,

~4b!

A35 (
m5n21

n11

A1m* A21m5
k

k211
, ~4c!

A45 (
m5n21

n11

~A1m* A1m2A21m* A21m!5
k221

k211
. ~4d!

To simplify the calculations we suppose that, as an elect
makes a transition from one level to another, the project
of the momentum of the electron onto the direction of t

1It is known @7# that, with regard to the anomalous magnetic m

ment of an electron, the operator (s•P̂) is not an integral of motion.
3-2
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magnetic field is conserved. In addition, random deviatio
of the orbital center of the electron due to radiation are
glected. These restrictions imply thatbz85bz ands85s ~see
Appendix B!.

Now, by analogy to a spinless particle, we find the exp
tation value of the operatorP̂ using the state of the Dirac
Pauli particle given by Eq.~1! ~see the corresponding matr
elements in Appendix B!. As a result of straightforward bu
cumbersome calculations, we derive, in view of these res
tions, the following equations:

^P̂x& t5
i

2
m0cb'@A1 exp~ ivt !2A1* exp~2 ivt !#

52
2

3
m0cb' sinvt, ~5a!

^P̂y& t5
1

2
m0cb'@A1 exp~ ivt !1A1* exp~2 ivt !#

5
2

3
m0cb' cosvt, ~5b!

^Pz& t5m0cbz . ~5c!

Here

v5
m0c2

\
~Bn11z2Bnz!5

e0H

m0c2Bnz

→ e0H

m0c2g

is the frequency that in the BMT approximation~the charge
motion is independent of the spin precession! coincides with
the cyclotron frequency of rotation of an electron in t
plane perpendicular to the magnetic field vector. In this
proximation,Bnz→g.

A similar procedure applies to calculations of the exp
tation value of the spin operatorŜm ~see@9#! to yield

Ŝm5S 1

m0c
~s•P̂!,r3s1

1

m0c
r1P̂1

ma

m0c2
r3HD .

Taking into account Eqs.~4!, we obtain

^Ŝx& t52
2

3
z'~cosvt sinVat1b sinvt cosVat !, ~6a!

^Ŝy& t52
2

3
z'~sinvt sinVat2b cosvt cosVat !, ~6b!

^Ŝz& t5
Bnz

b
zz1

bzb'

b
z' cosVat, ~6c!

^Ŝ0& t5
bz

b
zz1Bnz

b'

b
z' cosVat. ~6d!

Here zz
2512z'

2 , z'52k(k211)21 are constants that, a
will be seen later, are analogous to some constants in
classical spin theory. Thus, as in the classical approach
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total precession is determined not only by the cyclotron f
quencyv but also by the anomalous frequency to give

Va5
m0c2

\
~Bnz2Bnz8!52

maH

\

b

Abz
21b2

→ a

2p

e0H

m0c
A12bz

2.

Note that in the BMT approximation, the term comprisin
the anomalous magnetic moment in the spin operatorŜm is
immaterial for the result~6!.

We see that, by analogy with the spinless charged p
ticle, the results obtained in Eqs.~5a!, ~5b!, ~6a!, and ~6b!
differ from the corresponding solutions to the classical eq
tions of charge motion and spin precession by the factor

IV. SEMICLASSICAL CORRESPONDENCE PRINCIPLE

To construct a more precise semiclassical theory
charge motion and spin precession, we will consider a w
packet involving exact solutions to the Dirac-Pauli equat
~B2! corresponding to closely spaced energy levels.2 In this
case, wave function~1! can be written in the following form:

C~r ,t !5(
z

(
mPR

Azmcmz~r !expS 2
i

\
m0c2Bmzt D , ~7!

whereR is the set of values of the principal quantum num
ber. Let us assume that each value ofm in Eq. ~7! belonging
to the set is much larger than unity, i.e.,m@1. At the same
time, we have

n@N5mmax2mmin@1,

where mmax and mmin are maximum and minimum value
belonging toR, andn is the quantum number fromR defin-
ing some energy level to which a given classical traject
corresponds. Let us further assume that the other energy
els from the set are symmetric about leveln.

The next natural step in our method is to derive the co
ficientsAzm . The central idea of the derivation is the same
in Eq. ~3!, i.e.,

A1m5kA21m , (
z

(
mPR

Azm* Azm51.

Then, relations~4! can easily be extended to the case un
consideration, namely,

A15 (
m5mmin

mmax21

~A1m* A1m111A21m* A21m11!5
N21

N
,

~8a!

2It can be shown that there is a simpler form of this construct
for the motion of a spinless charged particle.
3-3
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A25 (
m5mmin

mmax21

A1m* A21m115 (
m5mmin

mmax21

A21m* A1m11

5
N21

N

k

k11
, ~8b!

A35 (
mPR

A1m* A21m5
k

k211
, ~8c!

A45 (
mPR

~A1m* A1m2A21m* A21m!5
k221

k211
. ~8d!

Following the above procedure of calculating the exp
tation values of the momentum and spin operators and u
Eqs.~8! we obtain

^P̂x& t52
N21

N
m0cb' sinvt,

^P̂y& t5
N21

N
m0cb' cosvt,

^P̂z& t5m0cbz ,

^Ŝx& t52
N21

N
z'~cosvt sinVat1b sinvt cosVat !,

^Ŝy& t52
N21

N
z'~sinvt sinVat2b cosvt cosVat !,

^Ŝz& t5
Bnz

b
zz1

bzb'

b
z' cosVat,

^Ŝ0& t5
bz

b
zz1Bnz

b'

b
z' cosVat.

Thus, forN@1, the difference of̂ P̂x& t , ^P̂y& t , ^Ŝx& t , and

^Ŝy& t from the results obtained by the classical theory
eliminated, and the time evolution of the expectation valu

^P̂& t and ^Ŝm& t is made to coincide with the solutions to th
corresponding classical equations@10#.

It is easy to see that the anomalous magnetic momen
an electron affects not only the time behavior of the s
projection onto the direction of motion~longitudinal polar-
ization! of the particle@7# but also the behavior of spin in th
plane perpendicular to the magnetic field vector, i.e., the t
evolution of^Ŝx& t and ^Ŝy& t .

V. CONCLUDING REMARKS

It should be noted that^Ŝm& t derived in Sec. IV satisfy the
relations given by the classical spin theory:

^Ŝm& t^P̂m& t50, ^Ŝm& t^Ŝm& t51.
04650
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Moreover, the procedure under review can be extended to
tensor operator@9#

P̂mn5~F̂,P̂!,

F̂52
1

m0c
r3~s3P̂!1

ma

m0c2
r1~s3H!,

P̂5s1
1

m0c
r2~s3P̂!1

ma

m0c2
H.

In the BMT approximation, the tensor operator is related
Ŝm by the formula@2#

P̂mn5
1

m0c
«mnabŜaP̂b .

Thus, the expectation values^Ŝm& t , ^P̂& t , and ^P̂mn& t ,
calculated following the procedure discussed in Sec.
obey the classical equation of charge motion and spin p
cession. The approach introduced in this work substanti
the use of the semiclassical method for gaining an insi
into physical phenomena associated with high-ene
charged particles. In particular, the semiclassical appro
can be the basis for a classical model for certain purely qu
tum processes. For example, it can be used to establi
relationship between spin-flip transitions and classical s
precession@3#.

ACKNOWLEDGMENTS

The authors would like to thank Professor V. G. Bagr
for support and valuable discussions.

APPENDIX A

The motion of a scalar particle in a constant homogene
magnetic fieldH5(0,0,H) is given by the Klein-Gordon
equation

S 1

c2
Ê22P̂21m0

2c2D c~r ,t !50,

where Ê5 i\]/]t is the energy operator,P̂5p̂2(e/c)A is
the kinetic momentum operator,A5(2Hy/2,Hx/2,0), e5
2e0,0 is the charge, andm0 is the rest mass of the particle

It is known that in this case the wave functionc(r ,t) is to
be the eigenfunction of the energy operatorÊ, and of the
projection of the kinetic momentum operatorP̂ and orbital
angular momentum operatorL̂5r3p̂ onto the direction of
the magnetic field vector, i.e.,

Êc5Enc, P̂zc5pzc, L̂zc5\ lc.

Then, in the cylindrical coordinates (r ,w,z) most suitable in
this case, the solution to the Klein-Gordon equation has
form @11#
3-4
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c~r ,t !5
Ae0H

ALA2p\c
e2 iEnt/\eipzz/\eil wI n,s~r!. ~A1!

The functionI n,s(r) in Eq. ~A1! is defined by the Laguerre
polynomialsQs

l (r) with the help of the following relation:

I n,s~r!5
1

An!s!
e2r/2Qs

n2sr (n2s)/2, r5
e0H

2\c
r 2.

Here n5 l 1s50,1,2, . . . is theprincipal quantum number
and s50,1,2, . . . and l 50,61,62, . . . are theradial and
azimuthal quantum numbers.

The energy of the particle is written as

En5m0c2Bn5m0c2A11bz
21b'

2 ,

b'52Am0H

m0c2 S n1
1

2D ,

wherebz5pz /m0c is the projection of the momentum ont
the direction of the field andm05e0\/2m0c is the Bohr
magneton.

The matrix elements of the momentum operator of
scalar particle have the form

^cm8uP̂xucm&5
i

2
m0cb'~dm82m,112dm82m,21!,

~A2a!

^cm8uP̂yucm&5
1

2
m0cb'~dm82m,111dm82m,21!,

~A2b!

^cm8uP̂zucm&5m0cbzdm8m . ~A2c!

APPENDIX B

We use the solutions to the following Dirac-Pauli equ
tion:

i\
]c

]t
5Ĥc, Ĥ5c~a•P̂!1r3m0c21mar3~s•H!,

where P̂5p̂2(e/c)A is the kinetic momentum operator,A
5(2Hy/2,Hx/2,0), H is the external magnetic field,ma
5(a/2p)m0 is the anomalous part of the electron magne
moment, ande52e0,0 and m0 are the charge and res
mass of the electron.

It is known @7# that in this case a complete set of com
muting operators characterizing the quantum state of the
ticle consists of the HamiltonianĤ, projections of the mo-
mentum operatorP̂ and total angular momentum operatorĴ
5L̂1 1

2 \s onto the direction of the magnetic field vecto
and the polarization operator. For definiteness, the magn
field vector is oriented along theZ axis. According to@7# the
operator
04650
e
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c
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P̂z5sz1
1

m0c
r2~s3P̂!z1

maH

m0c2

in a homogeneous magnetic field is taken as a spin inte
of motion characterizing the electron-spin polarization re
tive to the magnetic field vector. Then we have

Ĥc5Enzc, P̂zc5pzc, Ĵzc5\S l 2
1

2Dc, ~B1a!

P̂zc5zbc, z561. ~B1b!

In cylindrical coordinates (r ,w,z), the wave function that
is a solution to the Dirac-Pauli equation and satisfies E
~B1! has the form@7#

c~r ,t !5
Ae0H

ALA2p\c
e2 iEnzt/\eipzz/\ei ( l 21)w f ~r,w!,

~B2!

where

f ~r,w!5S C1I n21,s~r!

iC2I n,s~r!eiw

C3I n21,s~r!

iC4I n,s~r!eiw

D .

Here n5 l 1s50,1,2, . . . is theprincipal quantum number
s50,1,2, . . . is theradial quantum number, andl 50,61,
62, . . . is theazimuthal quantum number. In dimensionle
form, the spin coefficientsCi are determined as

C15
z

2
A1

2 S 11z
1

bD FA11
bz

Bnz
1zA12

bz

Bnz
G ,

C25
z

2
A1

2 S 12z
1

bD FA12
bz

Bnz
2zA11

bz

Bnz
G ,

C35
z

2
A1

2 S 11z
1

bD FA11
bz

Bnz
2zA12

bz

Bnz
G ,

C45
1

2
A1

2 S 12z
1

bD FA11
bz

Bnz
1zA12

bz

Bnz
G ,

~B3!

where the electron energy is given as

Bnz5
Enz

m0c2
5Abz

21S A11b'
2 1z

maH

m0c2D 2

, ~B4!

bz5
pz

m0c
, b'52Am0H

m0c2
n, b5A11b'

2 .

Let us give the exact forms of all necessary matrix e
ments of the momentum and spin operators:
3-5
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^cm8z8uP̂xucmz&5
i

2
m0cb'~dm82m,112dm82m,21!dz8z ,

^cm8z8uP̂yucmz&5
1

2
m0cb'~dm82m,111dm82m,21!dz8z ,

^cm8z8uP̂zucmz&5m0cbzdm8mdz8z ,

^cm8z8uŜxucmz&5
i

2
@b2z~dm82m,112dm82m,21!#

3~dm82m,112dm82m,21!d2z8z ,
l.

.

04650
^cm8z8uŜyucmz&5
1

2
@b2z~dm82m,112dm82m,21!#

3~dm82m,111dm82m,21!d2z8z ,

^cm8z8uŜzucmz&5S z
Bnz

b
dz8z1

b'bz

b
d2z8zD dm8m ,

^cm8z8uŜ
0ucmz&5S z

bz

b
dz8z1

Bnzb'

b
d2z8zD dm8m .
,

.
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